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APPENDIX D:  Oxidative Potential  

 
• QC data for DTT measurements 

 
• Comparison of DTT reactivity in integrated PM samples with collection periods of 1-14 

days 
  



 
 

 

There is increasing scientific support for theories proposing that oxidative and nitrosative 

stress represent a primary pathway leading to the respiratory and systemic inflammatory 

responses associated with PM exposure (Li 2002; Xia 2004).  The capacity of PM to elicit 

oxidative stress reflects both the oxidant-generating properties of particles and their ability to 

stimulate cellular generation of reactive oxidant species.  From a mechanistic point of view, it is 

appealing to use biologically relevant properties of PM to characterize “exposure” in 

epidemiologic studies, rather than imperfect surrogates such as the total mass concentration, or 

even concentrations of various components.  One of the most widely described approaches to 

measure the oxidative potential of PM samples is to measure di-thiothreitol  (DTT) reactivity 

(Kumagai 2002; Li 2003). 

Here we describe work on measuring DTT from MESA Air/NPACT monitoring filters 

and developing models to predict DTT based on the PM2.5 component data.  We have not 

attempted to predict DTT for each PM speciation sample obtained in the MESA Air/NPACT 

campaign with an eye to developing a prediction model for oxidative potential and then 

predictions for MESA Air study participants that might be used subsequently in health effects 

analyses.  In light of the relatively poor predictive ability of our PM component models in 

NPACT, models based on measured data, we felt that similar models based on predicted values 

would produce even more uncertain predictions. 

   Sample selection 

Measurements of DTT reactivity were conducted on 314 extracts of PM samples from 

quartz filters that were collected in each of the six MESA Air/NPACT metropolitan regions.  

Selection of the filters was first divided between summer and winter seasons and included each 



 
 

of the twenty-six fixed sites in the MESA Air study.  For each site, an average of six samples 

was selected during each season.  To the extent possible, samples selected from all sites within a 

city were concurrent.  However, quartz filter samples which had two aliquot punches removed 

for replicate analysis for OC, EC and those classified as invalid due to flow rate or sample 

duration errors were excluded from the analysis set.  This prevented assembling complete sets of 

concurrent samples for each city due to the random occurrence of both replicate analyses and 

invalid samples.  

Sum of parts study.  Thirty-six filters were extracted and analyzed using the DTT 

microplate assay for a “sum of parts” study.  The objective was to evaluate whether sampling 

with a single filter for an extended period of time would provide comparable results to the 

summation of values obtained from multiple filters used for shorter durations, but having the 

same combined sampling time.  Three, two-week sampling sessions were conducted in Los 

Angeles, CA (6/1/09-6/15/09, 6/15/09-6/29/09, and 6/29/09-7/13/09).  For each session, a single 

two week sample was collected along with four intermediate samples (3-4 days) covering the 

same time period.  Additionally, with each session, eight daily filters were collected 

corresponding to two of the intermediate filters.   

Filters were collocated on a roof top of a University of Southern California building.  

After sampling, filters were placed in individual plastic petri dishes with lids, wrapped in 

aluminum foil, sealed in ziplock bags and stored in a -20°C freezer until analyzed.  These 

samples have been extracted and DTT reactivity measured. Description and interpretation of data 

from these samples is reported in Appendix D.   

 

 



 
 

    Laboratory analysis 

 DTT assay: The dithiothreitol (DTT) assay measures the presence or formation of 

reactive oxygen species via formation of the DTT-disulfide (Li 2002).  Unreacted DTT is 

detected colorimetrically after reaction with 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB), 

producing 5-mercapto-2-nitrobenzoic acid.  The rate of disappearance of DTT is proportional to 

the oxidant activity.  The assay uses 1,8-phenanthraquinone as a positive control and the absence 

of added oxidant species as a negative control (Kumagai 2002).  

We adapted the procedure of Li et al (Li 2003) for use with a microplate reader in order 

to improve sample throughput, sensitivity and precision. PM samples on quartz filters are 

extracted by ultrasonication in methanol (7 mL) for 60 minutes. The extract is concentrated to 1 

mL under a flow of nitrogen at 50°C in a Turbovap evaporative concentrator and then filtered 

through a 0.2 µm PTFE syringe filter. The extract is reduced to dryness and reconstituted in 65 

µL of methanol. After vortexing, water and phosphate buffer are also added to the sample.  To 

measure DTT reactivity, the entire extract is then incubated in the presence of DTT in a 96 well 

plate. At designated time points (0, 10, 20, 30, 40, 50 minutes) aliquots of the reaction mixture 

are withdrawn and added to microplate wells containing tris HCl in 20 mM EDTA and DTNB 

(5,5’-dithiobis-(2-nitrobenzoic acid)).  Absorption at 412 nm is recorded. The rate of DTT 

consumption is calculated from a plot of absorbance vs. time, and this value is corrected for 

atmospheric oxidation of DTT calculated from a blank filter extract time series.  

Quality Control: 

Data quality was monitored using control charts for the phenanthraquinone (PQ; positive 

control), filter blank (blank filters extracted with each batch of filters), and reagent blanks (one 

column of the 96 well plate that contains buffer, water, methanol, and DTNB, but no DTT). 



 
 

Control charts for the PQ and reagent blanks are included in Appendix D2. 

The limit of quantification (LOQ) was set equal to the average DTT reactivity of the 

blank filter + 2 std deviations (0.995 µM/min). Overall summary statistics for the DTT reactivity 

measurements are listed in Appendix Table D.1.  

We used quartz filters for the DTT analysis, as these were the only filters available to use 

for this assay. We recognize that DTT reactivity as measured for particles collected on quartz 

filters may well differ from reactivity of the same particles collected on Teflon filters. The quartz 

fibers themselves are unlikely to contribute directly to the DTT reactivity because DTT reactivity 

is measured on a solvent extract of the particles, which is filtered through a 0.25 micron syringe 

filter before undergoing the reaction with DTT. However, semivolatile material adsorbed onto 

the quartz filter would contribute to the particle extract and could potentially provide a small 

contribution to the measurements of DTT reactivity. Nevertheless, we do not believe that 

potential differences in DTT reactivity due to the choice of sample collection media adversely 

affect the primary goals of our study.  

Furthermore, it is worth emphasizing that the DTT assay is not standardized across 

laboratories. Thus the absolute values of the DTT reactivity differ between laboratories based on 

each laboratory’s choice of sampling media, extraction solvent and reagent concentrations and 

reaction conditions for the actual measurement of  DTT reactivity. Thus, it is not appropriate to 

compare absolute values of DTT reactivity between laboratories. However, it is reasonable to 

expect that relative measures of DTT reactivity are similar between laboratories: samples that 

exhibit high levels of DTT reactivity using one laboratory’s procedures should also be highly 

reactive by another laboratory’s procedure. 

  



 
 

   Statistical methods 

The primary goals of the statistical analysis are to: (1) evaluate trends in DTT reactivity 

across locations and seasons, and (2) to use multivariate statistical methods to identify chemical 

components of PM2.5 that are predictive of DTT reactivity in the data set. 

 Following a brief exploratory analysis of the response (DTT reactivity) and the 

predictors to inform modeling choices, the general stages of variable selection and model 

building are as follows: 

1. Identify plausible predictors of the response by use of the LASSO and best 

subsets regression without PM2.5.  PM2.5 has many specific chemical components 

– the predictors – and ideally these explain DTT reactivity better than the 

aggregate. (Note, however, that the numerical values of PM2.5 concentration are 

not a strict aggregate of the other predictors: the sum of the predictor 

concentrations does not equal PM2.5 concentration.) 

2. Upon selecting variables, add PM2.5 concentration to the regression model to 

assess its significance and predictive value.  Its addition may have implications 

for the significance of other variables. 

3. Last, add fixed effects for location, season, and the interaction between them to 

the model to assess whether they are significantly predictive of DTT reactivity 

after controlling for PM2.5 and its chemical components. 

 

 Exploratory description of DTT reactivity and predictors 

 Response and predictors: normalization and data cleaning 



 
 

All of the predictors are expressed as concentrations in units µg/m3, that is, normalized 

by the air volume passing through the filters.  DTT reactivity is measured as a rate in ng/min, 

absorbance vs. time.  As these scales are not comparable we also normalize the DTT reactivity, 

the response, by the calculated air volume, resulting in units of ng/min/m3. 

Another option, explored but not pursued in this treatment, is to further normalize the 

response and the predictors by the PM2.5 concentration, which essentially turns the predictors 

into “mass fractions”: fractions of PM2.5. 

There were 274 observations of the response and predictors.  The removal of partially 

missing data reduced this to 248 observations.  Two observations had 0 recorded for the quartz 

filter air flow, making normalization of the response impossible; this reduced the observations to 

246.  Last, one observation was removed due to an apparent extreme value (outlier) in one of the 

components.  The final data set contained 245 observations.  

Data description: figures and tables 

Appendix Figure D.1 illustrates the distribution of the DTT reactivity with a frequency 

histogram, with summary statistics shown in Appendix Table D.2.  The variable is contained in 

the rough range of 0 to 30 ng/min/m3, with no heavy tails; thus, it is reasonable to attempt to fit 

models for the response without additional transformation. 

Appendix Figure D.2 gives evidence of seasonal variation by location.  The locations of 

the observations are Baltimore, Chicago, Los Angeles, Los Angeles-Coastal, Los Angeles-

Riverside, New York, New York-Rockdale, St. Paul, and Winston-Salem; the seasons are rough 

categorization of Summer or Winter.  The number of observations that contributed to each 

boxplot are included in the x-axis for each location. 



 
 

Generally, DTT reactivity appears to be higher in Winter; most noticeably in Los 

Angeles, St. Paul, and Winston Salem.  New York and New York-Rockdale appear to 

demonstrate the opposite behavior, with DTT reactivity apparently lower from samples taken in 

Winter from these locations than is Summer, though this is not conclusive.  With many of these, 

the low numbers of observations should give one pause before interpreting too strongly.  Several 

of these location-seasons have very small numbers of observations, Los Angeles-Riverside in 

Winter being the most extreme with only 1 observation. 

The 52 predictors including PM2.5 are numerically summarized in Appendix Table D.3.  

Before calculating the summaries, each of the predictors was checked against its recorded limit 

of detection; if lower than the limit of detection, the limit of the detection was inserted in place 

of the original value.  The number of observations for which this occurred is recorded for each 

predictor. 

While the original scale of these predictors is in units of µg/m3, due to some of the low 

concentrations, the table is summarized in units of ng/m3, or 1000 × µg/m3.  Notably large mean 

concentrations besides PM2.5 are the different carbons lac (light absorbing carbon), EC 

(elemental carbon), and OC (organic carbon), and S (Sulfur). 

There are several predictors with substantial numbers of observations less than their limit 

of detection.  The most extreme case by far is W, with only 11 values above the limit of 

detection.  Hence, W is omitted from the analysis due to the dearth of useful data. 

Correlations between predictors 

Variable selection and regression in general is complicated by the existence of highly 

correlated variables, with no firm rules on how to treat such correlations.  For groups of 



 
 

correlated variables, simple solutions range from using one as a proxy to averaging their 

standardized values to doing nothing. We adopted various treatments for correlated variables. 

Rather than show all pairwise correlations, we identify loosely defined groups for which 

at least one pairwise correlation is above 0.65.  In Appendix Table D.5 the elements are assigned 

to (mutually exclusive) groups, with “groups” 4 and 5 consisting of single elements. 

For Group 1, each pair within the four predictors (Ba, Cu, K, Sr) are highly correlated. As 

they are all similar elements, mostly alkali metals, we take the average of the four predictors as a 

representative for all of the four.  

For Group 2, as Si is highly correlated with Al, we use the value of Al to represent most 

of the information of the Si term. 

For Group 3 we use EC to represent Fe and light absorption coefficient (LAC).  We note 

that EC has the highest correlation of the three with the response. 

Groups 4 and 5 each contain a single pair of correlated components. We chose to retain 

both Na and V of Group 4 as candidate predictors.  However, the correlation of S and P is about 

0.8, so we created a new variable based on their standardized values, “Group B”. 

After dealing with the high correlation issues, the number of predictors is reduced from 

51 to 44. There is some subjectivity in such choices, which should be remembered in interpreting 

the subsequent models. 

Variable selection 

The purpose of this analysis is to select a group of predictors jointly predictive of DTT 

reactivity. There are 245 observations and 43 variables to choose from. The large number of 



 
 

predictors and comparatively few observations make the model selection problem crucial. We 

review two general methods of selection and compare the results. 

LASSO 

The LASSO refers to the Least Absolute Shrinkage and Selection Operator. Consider the 

following linear regression model with standardized predictors: 

0 1 1 2 2 0Y ... +T
i i i p pi i i ix x xβ β β β ε β ε= + + + + + = + x ‰  eqn. (1) 

 

The coefficients ‰ can be estimated by minimizing the penalized least squares criterion: 

2

i
(Y ) | |T

i i j
j

γφ λ φ− +∑ ∑x         eqn. (2) 

OLS (ordinary least squares) estimation of linear regression estimates ‰ by minimizing 

the residual sum of squares without the penalty term. However, OLS estimation is not 

satisfactory in an application like this with many predictors. One reason is that it has low 

prediction bias but large variance. The predictive accuracy can be improved by adding the 

second penalty term in (2), which can be tuned by various criteria. Another reason for using the 

LASSO is that the interpretation of OLS estimators can be difficult with a large number of 

predictors. “Unguided” OLS includes all of them in the model; this generally results in a model 

“over fitting” the observations at the expense of poor (out of sample) predictions. . 

When 1γ = , which is the case of LASSO, the estimators minimizing (2) have the potential 

of being exactly 0 if λ  is sufficiently large. Thus the LASSO algorithm effectively does both 

model selection and parameter estimation.  The issue of model selection is particularly important 

in this case with comparatively few observations and many predictors. 



 
 

We have several criteria on which to tune the parameterλ  which penalizes models with 

many variables.  We use Mallow’s Cp, and the Bayesian Information Criterion (BIC).   

Mallow’s Cp is defined as 2 2p
p

SSE
C N P

S
= − + , in which SSEp is the error sum of 

squares with p predictors, N is the sample size, and S2 is the residual mean square regressed on 

the complete data.  The term p is the number of predictors, so Cp penalizes overfitting. 

Another criterion is the BIC. In regression cases, it is defined as 

2log(1 ) logBIC n R p n= − +  where n is the number of observations and p the number of 

predictors. The BIC also represents a tradeoff between the fit and the complexity.  When log 

n>2, the BIC has larger penalties for more variables, and tends to select fewer variables than 

with Mallow’s Cp. 

Best subsets regression 

The best subsets method finds “best” subsets of predictors for models of varying sizes 

(numbers of predictors) based on r-squared, or equivalently, the least squares criterion.  The 

models can be compared using Mallow’s Cp and BIC, finding the best model according to either 

of the two criteria.  

    Results  

Appendix Table D.4 shows the model selection result with the two methods: LASSO and 

best subsets.  The LASSO, minimizing BIC, chose a model with 10 predictors. We can see from 

the right panel of Appendix Figure D.1 that the BIC value increases rapidly with the size of the 

model beyond 10 predictors. On the other hand, as shown in left panel, Mallow’s Cp does not get 

notably worse when increasing the model size beyond 10 predictors. The sizes of the model 



 
 

selected by BIC and the Mallow’s Cp are not always the same. However in this case we obtain 

arguably 10 predictors chosen by the LASSO model with either the BIC or the Mallow’s Cp 

criterion. 

The Best subsets regression selects 11 predictors with the Mallow’s Cp criterion, and 7 

with BIC (Appendix Figure D.4). As shown in Appendix Table D.4, some of the predictors 

selected by best subsets are consistent with the ones selected by the LASSO, while others are 

not. 

The difference in the two selected models comes from different methods of model 

selection. The major difference is that the LASSO penalizes large coefficients to find a balance 

between the bias and the variance, while best subsets regression does not.  In this sense, Cp and 

BIC, despite being similarly calculated, are not directly comparable between the LASSO and 

best subsets models.  As we will see shortly, given just the set of LASSO predictors the R-

squared, Cp, and BIC could all be improved by fitting the coefficients with OLS rather than the 

penalized criterion.  Thus, caution is advised in interpreting the best subsets models as 

predictively superior to the LASSO solely based on the disparity in R-squared, Cp, and BIC in 

Appendix Table D.4. 

 
Candidate models with OLS 

We now use traditional means by which to evaluate the selected variables.  We will 

examine the OLS results for the variables selected by the LASSO as well as best subsets. 

OLS results for LASSO predictors 

Appendix Table D.6 shows the standardized coefficients for the variables selected by the 

LASSO using OLS along with the estimates from the LASSO itself.  The DTT response is not 



 
 

standardized. We notice that components Br, Ce, La, Se, and V do not appear individually 

significant at the 0.05 level, although they are included in the model selected by the LASSO; 

they contribute jointly to the quality of prediction. We note that none of these five variables 

appear in both the models selected by best subsets (Appendix Table D.4).  The difference in the 

estimated coefficients between the LASSO fit and the OLS fit of LASSO-selected variables 

underscores the general coefficient shrinkage that occurs with the LASSO R-squared is naturally 

larger for the OLS fit (0.31) than for the LASSO fit (0.25), commensurate with minimizing in-

sample squared error. 

OLS results for best subsets predictors 

Appendix Table D.7 shows the standardized coefficients for the 11 variables selected by 

best subsets with the Cp criterion used to select the best model.  We see that nearly all the 

predictors are significant at a level of 0.05, with the one that is not, Zn_conc, very close to this 

threshold of evidence. 

PM2.5 and Location-Season effects 

Phases two and three of the modeling strategy involve adding PM2.5 and location-season 

effects in sequence to investigate the incremental benefit of these predictors.  To do this, we 

proceed with the conventional approach of adding these predictors and assessing the significance 

by F-tests as well investigating the influence of these additions on other predictors. 

There are two parallel models, the LASSO and best subsets predictors, with which to 

proceed.  As the best subsets method is still more conventional, we proceed with this model as a 

baseline on which to assess PM2.5 and location-season. 

Phase 2: PM2.5. 



 
 

The addition of PM2.5 to the baseline model is significant at a 0.05 level (F1,232=5.38, p-

value = 0.02).  The results expressed in both unstandardized and standardized coefficients are 

shown in Appendix Table D.8.  Note that as Group A and Group B predictors are composites, the 

choice of scale is arbitrary and thus duplicate values are not shown.  All predictors are centered, 

meaning that the intercept reflects the fitted value when all predictors are set at their respective 

mean values. 

With the inclusion of PM2.5, the evidence for the inclusion of some of the predictors is 

weakened; specifically, predictors Cl, Zn, and Au are no longer statistically significant at a 0.05 

level, although they remain close to being so. 

Phase 3: Location and season effects 

With 9 locations, 2 seasons, and the plausibility that seasonal effects differ by location, 

there are 18 different combinations of location and season resulting in an additional 17 

parameters in the model.  The addition of location-season main effects and interactions is 

significant at a 0.05 level (F17,215=3.49, p-value < 0.001).  The subsequent estimates for the 

existing predictors, expressed in both unstandardized and standardized coefficients, are shown in 

Appendix Table D.9.   

With the inclusion of location-season effects, many predictors become insignificant.  

These include Cl, Zn, and Ti most severely, but also Se, Au, EC, and PM2.5.  Group B, Ag, OC, 

Group A, and Hf remain significant at a 0.05 level. 

We may also examine the location-season specific intercepts for DTT reactivity, set at the 

global mean values for each of the predictors.  These, along with the number of samples per 

location-season and standard errors appear in Appendix Table D.10.   



 
 

    Discussion 

A few different approaches to variable selection were attempted.  Based on tradeoffs 

between fit and model complexity, the following two models were pursued: 

1. The LASSO, used for variable selection, selected the variables Ag, Br, Ce, Cl, La, 

Se, V, Zn, OC, and Group B.  In an OLS fit with these same variables, Ag, Cl, Zn, 

OC, and Group B were significant at a 0.05 level.  Group B represents the 

combination of S and P, of which S occurs at much higher concentrations. 

2. Best subsets regression using Cp selected variables Ag, Au, Cl, Hf, Se, Ti, Zn, EC, 

OC, Group A, and Group B.  Nearly all of these were significant at a 0.05 level, 

with Zn nearly so.  Group A represents a combination of Ba, Cu, K, and Sr with K 

occurring at the highest concentrations of the four. 

The LASSO is oriented towards prediction for which variable selection is a by-product.  

As such, it is inadvisable to discard the predictors from the LASSO as insignificant in an OLS 

treatment or discard LASSO results solely based on comparing in-sample measures such as R-

squared, Cp, or BIC. 

For formal inference about the significance of PM2.5 and location-season effects, selected 

predictors from the best subsets (Cp) model were used as a baseline model to which these were 

added.  PM2.5 was found to be significant when added to the baseline model.  Location and 

season effects were also found to be significant, implying that a significant amount of DTT 

reactivity cannot be explained solely based on PM2.5 and identifiable components. 

We summarize the fitted models in terms of conventional measures residual standard 

error, R-squared, and BIC in Appendix Table D.11.  PM2.5 explains significant variation in DTT 

unexplained by the component concentrations, while the city and season effects represent 



 
 

sources of variability not represented by filter component measurements.  Further, though 

conventional statistical tests indicate the significance of PM2.5 and location-season effects, BIC, 

which penalizes more severely for model complexity, suggests that the baseline model is better, 

or at parity with, the more complex models.  The models attempted are modestly predictive, with 

R-squared’s ranging from 0.35 to 0.50. 

 

Appendix Table D.1: Summary statistics for measurements of DTT reactivity  

 

Total number of extracts analyzed 
(including duplicates) 365 

number of extracts <LOQ 25 (6.8%) 
Range of DTT reactivity values  0.16 – 8.53 µM/min 

Mean (SD) DTT reactivity 3.31 (1.25) µM/min 
Median DTT reactivity 3.28 µM/min 

Precision (relative percent difference 
between duplicate filters) 11% 



 
 

Appendix Table D.2: Summary of DTT Reactivity 

 
 N Mean Std Dev Min Median Max 
DTT Reactivity (ng/min/m3) 245 11.04  3.62  0.17  10.38  27.00  

 
  



 
 

Appendix Table D.3: Summary of the predictors of DTT reactivity. Concentrations reported in 
units of ng/m3 for chemical species and  

10-8/m for LAC. 

 

Predictor 

Number 
less than 
Limit of 
Detection Mean Std Dev Min Median Max 

Correlation 
with DTT 
reactivity 

Ag_conc 42  0.9  1.1  0.0  0.8  5.1  0.18 
Al_conc 0  34.3  23.8  0.0  30.3  145.3  -0.07 
As_conc 6  0.9  0.5  0.0  0.9  2.7  0.12 
Au_conc 0  0.0  0.1  0.0  0.0  0.9  0.08 
Ba_conc 12  10.2  13.5  0.6  6.4  112.4  -0.13 
Br_conc 0  3.7  1.4  1.1  3.5  9.8  0.14 
Ca_conc 0  75.5  41.0  16.8  68.3  213.2  -0.06 
Cd_conc 85  1.2  1.2  0.0  0.9  5.5  -0.08 
Ce_conc 21  0.6  0.6  0.0  0.4  2.5  -0.22 
Cl_conc 0  7.8  46.5  0.0  0.0  536.2  0.18 
Co_conc 28  0.1  0.3  0.0  0.0  2.1  0.04 
Cr_conc 82  1.0  1.9  0.4  0.7  29.3  -0.04 
Cs_conc 0  0.5  0.9  0.0  0.0  4.5  -0.04 
Cu_conc 3  6.4  6.6  1.0  4.6  57.2  -0.08 
Eu_conc 13  0.9  1.6  0.0  0.1  17.2  -0.03 
Fe_conc 0  113.4  63.6  27.4  97.8  370.0  0.03 
Ga_conc 23  0.3  0.5  0.0  0.2  5.4  0.02 
Hf_conc 147  1.1  1.2  0.0  0.9  12.5  -0.11 
Hg_conc 0  0.1  0.2  0.0  0.0  1.1  -0.06 
In_conc 51  1.4  1.5  0.0  1.0  6.8  -0.05 
Ir_conc 0  0.5  1.1  0.0  0.0  9.3  -0.09 
K_conc 0  121.4  189.2  25.9  73.0  1,306.9  -0.11 
La_conc 0  0.6  0.9  0.0  0.0  5.9  -0.16 
LAC 0  7,443.3  3,945.7  1,966.0  6,662.0  23,120.0  0.08 
Mg_conc 84  33.5  27.1  0.0  40.4  176.4  0.00 
Mn_conc 0  3.3  2.0  0.4  2.8  13.9  0.10 

 

  



 
 

Appendix Table D.3 (cont.): Summary of the predictors of DTT reactivity. Concentrations 
reported in units of ng/m3 

 

Predictor 

Number 
less than 
Limit of 
Detection Mean Std Dev Min Median Max 

Correlation 
with DTT 
reactivity 

 

Mo_conc 11  0.5  0.6  0.0  0.4  6.3  0.04 
Na_conc 0  43.4  104.3  0.0  0.0  566.9  -0.21 
Nb_conc 0  0.1  0.3  0.0  0.0  1.6  -0.04 
Ni_conc 17  1.4  2.1  0.0  0.6  10.9  -0.16 
P_conc 0  30.4  10.6  7.7  28.4  68.8  -0.15 
Pb_conc 0  3.7  2.8  0.0  3.3  31.3  0.16 
Rb_conc 161  0.5  0.2  0.2  0.5  1.5  -0.12 
S_conc 0  1,429.4  622.0  386.2  1,324.1  3,230.6  -0.18 
Sb_conc 111  5.6  3.9  0.0  4.8  27.3  0.10 
Sc_conc 30  0.1  0.3  0.0  0.0  1.6  -0.09 
Se_conc 0  1.1  0.6  0.0  0.9  3.3  0.18 
Si_conc 0  120.6  52.8  39.7  112.3  351.5  -0.11 
Sm_conc 0  0.1  0.3  0.0  0.0  4.0  -0.03 
Sn_conc 171  6.5  2.3  3.4  6.2  15.1  0.02 
Sr_conc 22  1.5  3.9  0.0  0.6  32.3  -0.15 
Ta_conc 75  0.6  1.2  0.0  0.5  13.6  -0.01 
Tb_conc 28  4.2  5.1  0.0  2.7  30.0  -0.06 
Ti_conc 0  5.3  3.2  0.7  4.5  27.7  -0.09 
V_conc 0  2.1  2.3  0.0  0.7  8.9  -0.31 
W_conc 234  1.8  0.8  0.9  1.7  9.0  0.05 
Y_conc 57  0.3  0.3  0.0  0.3  1.2  -0.12 
Zn_conc 0  17.8  13.2  2.9  14.0  92.4  0.18 
Zr_conc 43  0.9  0.8  0.0  0.7  5.2  0.02 
EC_conc 1  1,445.1  654.6  0.3  1,280.0  4,610.0  0.12 
OC_conc 22  2,008.0  751.6  811.3  1,900.0  4,970.0  0.27 
PM2.5_conc 0  13,985.2  4,498.1  5,356.7  13,550.2  31,576.3  0.04 

 

  



 
 

Appendix Table D.4.  Selected predictors by the LASSO and the best subsets method. 

 

 LASSO (Cp/BIC) Best Subsets (Cp) Best Subsets (BIC) 

GroupB  X X X 

Cl_conc  X X X 

Ag_conc  X X  

Se_conc  X X X 

Zn_conc  X X X 

OC_conc  X X X 

La_conc  X  X 

Br_conc  X   

Ce_conc  X   

V_conc  X   

Ti_conc   X X 

GroupA   X  

Au_conc   X  

Hf_conc   X  

EC_conc   X  

R-squared 0.25 0.35 0.30 

Cp 26.2 -4.9 3.6 

BIC -9.5 -39.0 -43.0 

 

  



 
 

Appendix Table D.5: Grouping of predictors of DTT reactivity determined by inspection of 
pairwise correlations. 

 

Group 1 (“Group A”): 
 Cu K Sr 
Ba 0.95 0.92 0.93 
Cu  0.83 0.86 
K   0.96 

 
Group 2 

 Ca Mn Si 
Al 0.53 0.35 0.73 
Ca  0.66 0.65 
Mn   0.40 

 
Group 3 

 lac Ti Zr EC 
Fe 0.88 0.75 0.72 0.75 
Lac  0.65 0.72 0.81 
Ti   0.51 0.54 
Zr    0.55 

 
Group 4 

 V 
Na 0.68 

 
Group 5 (“Group B”) 

 S 
P 0.80 

 

 

  



 
 

Appendix Table D.6: LASSO and OLS estimates for the LASSO predictors 

 
 LASSO Estimate OLS Estimate Std.Error T value Pr(>|t|) 
(Intercept)  11.06  0.20    
V_conc -0.48 -0.31 0.30 -1.04 0.301 
OC_conc 0.71 1.18 0.25 4.62 <0.001 
Ce_conc -0.24 -0.35 0.23 -1.57 0.117 
Cl_conc 0.26 0.51 0.20 2.55 0.011 
Br_conc 0.25 0.39 0.25 1.53 0.127 
Ag_conc 0.20 0.42 0.20 2.06 0.041 
Zn_conc 0.22 0.54 0.21 2.58 0.010 
GroupB -0.45 -1.13 0.30 -3.72 <0.001 
La_conc -0.07 -0.27 0.22 -1.25 0.214 
Se_conc 0.08 0.43 0.25 1.73 0.086 
R-squared 0.25 0.31    

 

  



 
 

Appendix Table D.7: OLS estimates for the best subsets predictors 

 
 Estimate Std.Error T value Pr(>|t|) 
(Intercept) 11.06  0.19  57.85  <0.001 
GroupB -1.48  0.25  -5.98  <0.001 
Ag_conc 0.42  0.20  2.10  0.037  
Cl_conc 0.56  0.19  2.87  0.005  
Se_conc 0.74  0.23  3.17  0.002  
Zn_conc 0.42  0.22  1.92  0.056  
OC_conc 1.20  0.25  4.74  <0.001 
GroupA -0.50  0.21  -2.37  0.019  
Au_conc 0.42  0.19  2.15  0.033  
Hf_conc -0.48  0.21  -2.33  0.021  
Ti_conc -0.72  0.24  -3.01  0.003  
EC_conc 0.87  0.30  2.84  0.005  
R-squared 0.35    

 

  



 
 

Appendix Table D.8: The baseline model for DTT reactivity with the addition of PM2.5 

 
 Unstandardized Estimate Standardized Estimate Std.Error T value Pr(>|t|) 
(Intercept) --- 11.057 0.1894   
group B --- -2.01 0.34 -6.00 <0.001 
Ag_conc 363.18 0.41 0.20 2.08 0.039 
Cl_conc 7.44 0.35 0.21 1.62 0.106 
Se_conc 1257.39 0.75 0.23 3.25 0.001 
Zn_conc 28.60 0.38 0.22 1.75 0.082 
OC_conc 1.48 1.11 0.25 4.39 <0.001 
group A --- -0.58 0.21 -2.73 0.007 
Au_conc 2759.55 0.35 0.19 1.83 0.069 
Hf_conc -355.92 -0.44 0.21 -2.13 0.034 
Ti_conc -268.91 -0.85 0.24 -3.49 <0.001 
EC_conc 1.18 0.78 0.30 2.55 0.011 
PM2.5 0.18 0.82 0.35 2.32 0.021 
R-squared 0.36     
 

  



 
 

Appendix Table D.9: The baseline+PM2.5 model for DTT reactivity with the addition of location-
season effects 

 
 Unstandardized Estimate Standardized Estimate Std.Error T value Pr(>|t|) 
group B See Standardized -1.04 0.45 -2.30 0.022 
Ag_conc 334.34 0.38 0.19 1.99 0.047 
Cl_conc 3.08 0.14 0.22 0.65 0.516 
Se_conc 655.87 0.39 0.28 1.39 0.165 
Zn_conc 15.39 0.20 0.27 0.76 0.448 
OC_conc 1.61 1.21 0.31 3.89 <0.001 
groupA See Standardized -0.45 0.20 -2.21 0.028 
Au_conc 2768.88 0.36 0.20 1.77 0.078 
Hf_conc -382.64 -0.47 0.21 -2.22 0.027 
Ti_conc -59.29 -0.19 0.27 -0.69 0.488 
EC_conc 0.93 0.61 0.36 1.67 0.097 
PM2.5 0.13 0.58 0.43 1.36 0.175 
R-squared 0.50     

 

  



 
 

Appendix Table D.10: Location-seasons intercepts for DTT reactivity. 

 

Location Season N Estimated Intercept (ng/min/m3) Std. Error 
Baltimore Summer 25 9.3 0.7 
 Winter 19 12.1 0.7 
Chicago Summer 37 11.1 0.5 
 Winter 16 13.2 0.9 
Los Angeles Summer 14 9.0 0.9 
 Winter 3 11.5 1.7 
Los Angeles-Coastal Summer 23 10.6 0.7 
 Winter 10 9.6 1.0 
Los Angeles-Riverside Summer 11 9.8 1.0 
 Winter 1 6.9 3.2 
New York Summer 8 11.0 1.4 
 Winter 6 10.3 1.4 
New York-Rockdale Summer 6 12.1 1.3 
 Winter 2 10.6 2.0 
St. Paul Summer 21 10.7 0.7 
 Winter 11 14.5 1.0 
Winston-Salem Summer 17 9.2 0.9 
 Winter 15 15.0 0.9 

 

  



 
 

Appendix Table D.11: Model comparisons for predicting DTT reactivity 
 

Model 
Number of 
Predictors 

Residual Std 
Error R-squared BIC 

Baseline (Best Subsets) 11 3.0 0.35 1291.5 
Baseline + PM2.5 12 3.0 0.36 1291.4 
Baseline + PM2.5 + Location-season 29 2.7 0.50 1325.2 

 

 

 

Appendix Figure D.1: Histogram of DTT Reactivity 
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Appendix Figure D.2: DTT reactivity by location and season 
  



 
 

 

Appendix Figure D.3A The choice of predictors by the two criteria with the LASSO. (Left panel: 
Mallows Cp; right panel: BIC) 
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Figure D.4. The choice of predictors by the two criteria with best subsets method. (Left panel: 
Mallows Cp; right panel: BIC) 
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APPENDIX D.2: QC DATA FOR DTT MEASUREMENTS 

 

 
Appendix Figure D.2.1: Control chart illustrating variability in DTT oxidation response for 
phenathraquinone (PQ) samples used as positive control in the DTT assay.  
 
 

 
Appendix Figure D.2.2: Control chart illustrating variability in DTT oxidation response for 
extracts of blank filters in the DTT assay.  
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APPENDIX D.3: COMPARISON OF DTT REACTIVITY IN 
INTEGRATED PM SAMPLES WITH COLLECTION PERIODS OF 1-

14 DAYS 
 

An experiment was conducted to evaluate the stability of oxidative potential of 

particulate matter samples measured using the DTT assay.  More specifically, the objective was 

to evaluate whether sampling with a single filter for an extended period of time would provide 

comparable results to the summation of values obtained from multiple filters collected 

contemporaneously over shorter durations, but having the same combined sampling time and 

volume of air.   

Particulate matter samples were collected on pre-fired quartz filters in early summer, 

2009, for analysis of oxidative potential. Filters were collocated on the rooftop of a University of 

Southern California building. Three, two-week sampling sessions were conducted (6/1/09-

6/15/09, 6/15/09-6/29/09, and 6/29/09-7/13/09).  For each session, a single two week sample was 

collected in parallel with four intermediate samples (3 or 4 days) covering the same time period.  

Additionally, with each session, seven daily filters were collected corresponding to two of the 

intermediate filters.   

After sampling, filters were placed in individual plastic petri dishes with lids, wrapped in 

aluminum foil, sealed in ziplock bags and stored in a -20°C freezer for approximately six months 

prior to analysis for oxidative potential using the DTT assay. 

Results 

Appendix Table D.2.1 illustrates the relationship in time between the daily intermediate 

(3-4 day) and 2-week composite samples for each of the three sampling campaigns. One of the 3-

day samples (sample id# QH-L-F-052-103-S) was excluded from the analysis because the pump 

failed after seven hours.    



 
 

First event  June 1 – June 15, 2009 
Day 2-week composite Intermediate Daily 

1 

QH-L-F-051-001-S 

QH-L-F-052-101-S 

QH-L-F-053-111-S 
2 QH-L-F-053-112-S 
3 QH-L-F-053-113-S 
4 QH-L-F-053-114-S 
5 

QH-L-F-052-102-S 

Not collected 
6 Not collected 
7 Not collected 
8 Not collected 
9 

QH-L-F-052-103-S 
QH-L-F-053-131-S 

19 QH-L-F-053-132-S 
11 QH-L-F-053-133-S 
12 

QH-L-F-052-104-S 
Not collected 

13 Not collected 
14 Not collected 

 
Second event  June 15 – June 29, 2009 

Day 2-week composite Intermediate Daily 
1 

QH-L-F-051-002-S 

QH-L-F-052-201-S 

QH-L-F-053-211-S 
2 QH-L-F-053-212-S 
3 QH-L-F-053-213-S 
4 QH-L-F-053-214-S 
5 

QH-L-F-052-202-S 

Not collected 
6 Not collected 
7 Not collected 
8 Not collected 
9 

QH-L-F-052-203-S 
QH-L-F-053-231-S 

19 QH-L-F-053-232-S 
11 QH-L-F-053-233-S 
12 

QH-L-F-052-204-S 
Not collected 

13 Not collected 
14 Not collected 

 
Third event  June 29 – July 13, 2009 

Day 2-week composite Intermediate Daily 
1 

QH-L-F-051-003-S 

QH-L-F-052-301-S  
QH-L-F-053-311-S 

2 QH-L-F-053-312-S 
3 QH-L-F-053-313-S 
4 

QH-L-F-052-302-S 

Not collected 
5 Not collected 
6 Not collected 
7 Not collected 
8 

QH-L-F-052-303-S 

QH-L-F-053-331-S 
9 QH-L-F-053-332-S 
19 QH-L-F-053-333-S 
11 QH-L-F-053-334-S 
12 

QH-L-F-052-304-S 
Not collected 

13 Not collected 
14 Not collected 

Appendix Table D.3.1:  Relationship between daily, intermediate and 2-week composite 
samples.  
 



 
 

Appendix Figure D.3.1 illustrates the comparison between the 2-week composite samples 

and the corresponding time weighted average of the four intermediate (3 or 4 day) samples 

collected over the same period as the two week composites. Figure D.3.2 illustrates a similar 

comparison between the intermediate (3 or 4 day) samples and the corresponding daily samples. 

 

Appendix Figure D.3.1: Comparison between two week composite samples and the time 
weighted average of the four corresponding intermediate (3 or 4 day) samples.  
 

In Appendix Figure D.3.2, measurements of DTT reactivity were in good agreement 

between the intermediate and long term samples for one of two paired samples. In Appendix 

Figure D.3.2, measurements of DTT reactivity were in good agreement between the intermediate 

and daily samples for three of five paired samples. In all cases the DTT reactivity determined as 

the average of the daily samples was greater than the DTT reactivity measured for the 

corresponding intermediate (2-4 day) sample. 
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Appendix Figure D.3.2: Comparison between intermediate (3-4 day) samples and the average of 
the four corresponding daily samples.  
 

The observation of lower reactivity in the intermediate samples compared to the daily 

samples raises the possibility that some of the reactive species in the PM samples become 

oxidized over time after collection on the filter, and having been so-oxidized are subsequently 

unable to oxidize DTT in the laboratory assay (i.e. DTT reactivity of the particles decays over 

time). However, the limited number of samples analyzed in the current study, and the fact that 

consistent, substantial differences in DTT reactivity between short term and longer term samples 

does not provide clear evidence of a loss of DTT reactivity as sampling time is increased.  

 

Conclusions 

Higher absolute DTT oxidation rates were observed from filters with longer sampling 

times (i.e. total DTT reactivity for 2-week samples was greater than 3-4 day samples, and daily 

samples were the least reactive).  This is to be expected due to the greater air volume sampled 
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and particulate matter collected.  When oxidation rates were normalized to sample volume, the 

shorter duration samples were more reactive, overall.  However, good agreement was observed 

in three out of five sample sets comparing 1-day and 3-4 day periods.  One of two valid sample 

sets showed good agreement between 3-4 day and 2-week periods.   
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